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Untargeted profiling of small-molecule metabolites from microbial culture supernatants (metabolic foot-
printing) has great potential as a phenotyping tool. We used time-resolved metabolic footprinting to compare
one Escherichia coli and three Pseudomonas aeruginosa strains growing on complex media and show that
considering metabolite changes over the whole course of growth provides much more information than analyses
based on data from a single time point. Most strikingly, there was pronounced selectivity in metabolite uptake,
even when the bacteria were growing apparently exponentially, with certain groups of metabolites not taken up
until others had been entirely depleted from the medium. In addition, metabolite excretion showed some
complex patterns. Fitting nonlinear equations (four-parameter sigmoids) to individual metabolite data allowed
us to model these changes for metabolite uptake and visualize them by back-projecting the curve-fit parameters
onto the original growth curves. These “uptake window” plots clearly demonstrated strain differences, with the
uptake of some compounds being reversed in order between different strains. Comparison of an undefined rich
medium with a defined complex medium designed to mimic cystic fibrosis sputum showed many differences,
both qualitative and quantitative, with a greater proportion of excreted to utilized metabolites in the defined
medium. Extending the strain comparison to a more closely related set of isolates showed that it was possible
to discriminate two species of the Burkholderia cepacia complex based on uptake dynamics alone. We believe
time-resolved metabolic footprinting could be a valuable tool for many questions in bacteriology, including
isolate comparisons, phenotyping deletion mutants, and as a functional complement to taxonomic
classifications.

The increasing speed of gene discovery has exceeded our
ability to understand gene function, and one of the bottlenecks
is the need for new, high-throughput tools to evaluate cellular
phenotypes (22). Even in bacterial genomes, less than 70% of
genes have an assigned putative function, and fewer still have
been characterized biochemically. Metabolic profiling ap-
proaches have shown great promise for providing these tools
for functional genomics and hypothesis generation (1, 6, 10, 18,
28, 43, 49) because they offer complementary information to
transcriptomics and proteomics, in particular giving an inte-
grated picture of information downstream of the genome (51).
Various aspects of cellular physiology, such as the levels of
transcripts, proteins, or protein activity, are altered in response
to environmental cues or metabolite concentrations them-
selves. In return, these changes are amplified in the metabo-
lome to give an accumulated—and highly sensitive—descrip-
tion of the physiological state of the organism or cellular
compartment (26, 45, 49). This extends to natural populations
that have multiple uncharacterized genetic changes, such as an
accumulation of mutations, as well as sometimes extensive

genetic differences such as pathogenicity islands (21), which
may interact to give complex phenotypes. Molecular phyloge-
netic methods based on gene sequences have proved successful
in classifying bacteria into taxonomic groupings, but these may
not always correspond to easily identifiable phenotypes or
ecotypes (29, 33, 48). Hence, additional methods for strain
assessment that could be related to function would still be
valuable.

Metabolomics gives an integrated measurement of cellular
phenotype and is highly suited to quantitative analysis and
description. In a microbial context, metabolomics offers the
additional advantage that there is only a single cell type and
little compartmentation (at least in comparison to the equiva-
lent problem in a multicellular organism). However, sampling
intracellular metabolites without either changing their relative
concentrations or introducing contamination from supernatant
metabolites is not straightforward, and research methods are
still under active development by different groups (7, 12, 15, 59,
62). In contrast, exometabolome or supernatant profiling
(“metabolic footprinting”) is simple, and extracellular metab-
olites can exhibit very large changes in pool size (1, 27, 40, 45).
These multiple advantages mean that exometabolome analysis
has already been used for a number of diverse applications,
such as phenotyping of both single-gene deletion mutants and
isolates from natural populations, although thus far mostly for
fungi rather than bacteria (1, 2, 9, 25, 40, 48).

Because metabolism integrates information from gene ex-
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pression and a wealth of environmental cues, each organism
will exhibit a distinct response, i.e., metabolic pattern that
takes into account all of these factors. It is therefore unsur-
prising that these patterns change with growth phase (1, 30).
Despite this fact, it is currently common practice to sample
only at one or two time points, mostly the end of growth, in
stationary phase (see, for example, reference 48) and/or in
mid-exponential phase (41, 52). In contrast, there is ample
evidence that cellular biochemistry changes during growth (1,
3, 8, 39). Vertebrate studies have shown that explicitly consid-
ering “through time” responses (metabolic trajectories) adds
considerably to the description and understanding of biological
events (16, 23, 58). We therefore argue that new approaches
that are capable of integrating metabolic phenotypes over a
range of conditions could be extremely beneficial for microbi-
ology.

In the present study we have developed such an approach
and evaluated it by monitoring metabolic changes over the
course of time in growing batch cultures. Time-resolved
metabolic footprinting (TReF) was used to compare the
well-studied organisms Escherichia coli and Pseudomonas
aeruginosa. We demonstrate that TReF is considerably more
data-rich and informative than sampling at single time points
and show the usefulness of the approach in hypothesis gener-
ation and as a phenotyping tool. We also show that TReF
distinguishes isolates from the closely related Burkholderia ce-
pacia complex (BCC) at the species level for B. cepacia and B.
cenocepacia, which is not the case for single time point analysis.
The approach is very general and would therefore benefit the
broader application of metabolomics to bacterial systems.

MATERIALS AND METHODS

Bacterial strains. We used the following strains in the present study: E. coli
MG1655; the P. aeruginosa wild-type strains PA01 and PA14 (50); P. aeruginosa
PA0381 leu-38 str-2, a leucine auxotroph derived from PA01 (17); B. cenocepacia
LMG 16654; B. cenocepacia LMG 16659; B. cenocepacia LMG 18830; B. ceno-
cepacia LMG 16656 (J2315); B. cenocepacia LMG 18863; B. cepacia LMG; B.
cepacia LMG 6963; B. cepacia LMG 6988; and B. cepacia LMG 18821. Starter
cultures for four biological replicates were set up by inoculating single colonies
into 5 ml of LB medium (10 g of tryptone, 5 g of yeast extract, and 5 g of
NaCl/liter), followed by growth overnight at 37°C, with shaking at 150 rpm. The
growth of PA01 was compared under the same conditions in synthetic cystic
fibrosis medium (SCFM), a complex defined medium designed to model nutrient
status in sputum (46). These cultures were used to inoculate 20 ml of LB or
SCFM in 250-ml conical flasks and then grown for 24 h at 37°C with shaking at
150 rpm.

Sampling. Portions (1 ml) were taken from the culture at 0, 2, 4, 5, 6, 7, 8, 9,
10, 11, 12, and 24 h for E. coli, P. aeruginosa PA01, and all Burkholderia strains.
The P. aeruginosa PA14 and P. aeruginosa PA0381 cultures were sampled at 0, 2,
3, 4, 5, 6, 8, 10, 12, 14, 16, and 24 h. (It should be noted that the total volumes
sampled from each culture would potentially change the cell physiology com-
pared to an unsampled flask; however, we were not aiming to model an un-
sampled culture.) For each sample, 0.1 ml was mixed with 0.9 ml of culture
medium for determination of the cell density (i.e., the optical density at 600 nm
[OD600]). The remainder of the sample was centrifuged (16,000 � g, room
temperature), and 0.75 ml of the supernatant was mixed with 0.2 ml of nuclear
magnetic resonance (NMR) buffer (25 mM sodium azide, 0.25 M phosphate
buffer [pH 7], 5 mM sodium 3-trimethylsilyl-2,2,3,3-2H4-propionate [TSP] in
2H2O). The 2H2O provided a field frequency lock for the spectrometer, and the
TSP served as an internal chemical shift reference.

1H NMR measurement. Spectra were acquired on a Bruker Avance DRX600
NMR spectrometer (Bruker BioSpin, Rheinstetten, Germany), with a magnetic
field strength of 14.1 T and a resulting 1H resonance frequency of 600 MHz,
equipped with a 5-mm inverse flow probe. Samples were introduced by using a
Gilson flow-injection autosampler. Spectra were acquired following the approach

described by Beckonert et al. (4). Briefly, a one-dimensional NOESY pulse
sequence was used for water suppression; data were acquired into 32 K data
points over a spectral width of 12 kHz, with 8 dummy scans and 64 scans per
sample, and an additional longitudinal relaxation recovery delay of 3.5 s per scan,
giving a total recycle time of 5 s.

Spectral processing and data analysis. Spectra were processed in iNMR 2.5
(Nucleomatica, Molfetta, Italy). Free induction decays were multiplied by an
exponential apodization function equivalent to 0.5 Hz line broadening, followed
by Fourier transformation. Spectra were manually phased and automated first
order baseline correction was applied. Spectral data between �0.5 and 10 ppm
were then imported into Matlab 2007b (MathWorks, Cambridge, United King-
dom) and normalized to the integral of the TSP signal. Metabolites were as-
signed using in-house data, the Chenomx NMR Suite 3.1 (Chenomx, Inc., Ed-
monton, Alberta, Canada) and the Biological Magnetic Resonance Databank
metabolomics database (14). Signature peaks, i.e., well-resolved resonances that
could be easily assigned to one compound, were identified from the spectra.
Difference spectra were calculated in order to eliminate the influence of (non-
biological) variation in media composition. For this, the spectrum at time point
0 h was subtracted from the spectra of other time points of the same strain-
replicate pair (i.e., all spectra sampled from the same flask). In addition to
full-resolution spectra, all analyses were carried out on binned integrals repre-
senting the dominant resonances detected in fresh, noninoculated medium. A
total of 153 integrals were fitted for LB, and 130 integrals were fitted for SCFM.
For the heatmap plots, the overall range of the resonance intensity changes was
set to 1, and the changes were expressed relative to the starting values.

Modeling and pattern recognition analysis. We tested two different ap-
proaches to monitor the time-dependent changes in metabolite concentration. (i)
Linear regression analysis was carried out with both the OD600 and time as an x
variable. A cutoff value for goodness of fit (R2 � 0.6) was determined by visual
inspection of the fits. (ii) Nonlinear regression of the data against time using a
sigmoid curve model (equation 1) was carried out using “nlinfit” (Matlab statis-
tics toolbox). This resulted in fitting each variable with four parameters, the
amplitude of the curve, the “half-life” (t50), and the width of the decrease.
Cutoffs for t50 (1 to 24 h), width (0 to 12 h), and relative error (�0.6) were
imposed.

y �
amplitude

1 � e �
x�t50

width

� offset (1)

The width is defined as the time that elapses for the exponent of e to go from 1
to �1. Growth rate differences (E. coli grows faster than the Pseudomonas
strains) manifest themselves in higher t50 values for slower-growing than for
faster-growing strains, and these quantitative growth rate effects complicate the
elucidation of qualitative differences that are particularly interesting for strain
comparison purposes. Therefore, the sigmoid parameters were corrected for
growth curve bias before pattern recognition: the OD values were also fitted to
the same nonlinear model (equation 1). The amplitude was divided by the
amplitude of the OD, and the t50 was expressed relative to the t50 of the growth
curve by subtracting the t50 of each individual growth curve and dividing the
resulting values by the width of the growth curve (equation 2).

�t50i �
t50i � t50OD

widthOD
(2)

The fitting parameters were then mean-centered and used as inputs for hierar-
chical principal component analysis (H-PCA) (61). As a first step for H-PCA,
PCA was carried out on the corrected amplitude, the corrected “half-life,” and
the width. To account for the missing values introduced by using cutoff values,
a nonlinear iterative partial least squares-PCA algorithm was used. The three
resulting scores blocks were normalized by division by their highest values to
give each “score block” equal importance and used as input variables for a
second-level PCA.

RESULTS

TReF provides additional biological information compared
to single time point analysis. Initially, we monitored changes in
Luria broth culture supernatant during the growth of the
widely studied gram-negative bacteria E. coli (wild-type
MG1655) and P. aeruginosa (wild-type PA01 and PA14 and the
leucine auxotroph PA0381, which was derived from PA01
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[17]). In addition, growth of PA01 in a defined medium
(SCFM) (46) was compared. The 1H NMR spectra showed a
complex mixture of small molecules, the majority of which
could be readily assigned by comparison of their multiplicity
and chemical shift to published or online values (Table 1).
There were also a smaller number of resonances, which we
have not yet assigned (0.91d, 1.07d, 1.19m, 1.27m, 1.36d,
2.69m, 3.81s, 5.85d, 5.88d, 6.03d, 6.08d, 6.15d, 6.30d, and
6.86m).

Over the course of growth there were major changes in the
metabolite composition of the growth media. This is illustrated
in Fig. 1A, which shows the chemical shift region from 2 to 4
ppm of one LB-grown culture of P. aeruginosa PA01 over time.
At the compound level, TReF revealed differences in the rates
of uptake of individual compounds, as shown for three amino
acids in P. aeruginosa PA01 LB cultures. Alanine was taken up
first from the medium, followed by threonine and then leucine
(Fig. 1B). This clear time separation shows different modes of
compound utilization during growth, and this differential com-
pound utilization was observed for multiple compounds and in
all investigated isolates. Further, the order in which com-

pounds were utilized varied, but was reproducible at the isolate
level. These differences would have been missed by single time
point profiling at 12 or 24 h and clearly indicate that compar-
ative metabolomics would benefit from the application of
TReF-based approaches, since differences can be highly
growth phase dependent.

Figure 2 provides a summary of the changes that were ob-
served in the investigated cultures over time. Figure 2A to E is
a heatmap representation of averaged difference spectra de-
picting both uptake and secretion at compound level, clearly
showing patterns of metabolite secretion and uptake that dif-
fered greatly between the different strains and media. Four
different modes were identified: (i) constant depletion, where
the majority of metabolites in the medium decreased con-
stantly over time (e.g., Fig. 1 and 3B); (ii) transient excretion,
followed by depletion, where some compounds (e.g., acetate
[Fig. 2F]) were excreted during one growth phase and taken up
during another; (iv) transient depletion, followed by excretion,
in which all Pseudomonas strains first took up formate, only to
excrete it at later time points (Fig. 2H); and (iv) constant
excretion, where some compounds increased in a sigmoid fash-
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FIG. 1. (A) Section of 600 MHz 1H NMR spectra (4 to 2 ppm) for
a single P. aeruginosa PA01 culture over a growth curve. Time-specific
metabolic changes are clearly seen. (B) Single compound utilization
data for three selected metabolites for P. aeruginosa PA01. Error bars
indicate the standard errors of the means (n � 4).

TABLE 1. Assigned NMR-visible resonances in LBa

Compoundb Assigned resonance
frequency(ies) (ppm)

Acetate* ..................................................1.92
Acetaldehyde*........................................2.24
Adenosine* .............................................6.08, 8.26, 8.34
Alanine*..................................................1.48, 3.79
Arginine* ................................................1.69, 1.73, 1.75, 1.91, 3.25, 3.78
Asparagine†............................................1.72, 2.86, 2.96, 4.00
Aspartate*...............................................2.68, 2.82, 3.91
Formate*.................................................8.46
Glucose* .................................................3.39, 5.24
Glutamate* .............................................2.07, 2.35, 3.74
Glycine* ..................................................3.57
Glycine-betaine* ....................................3.27, 3.90
Histidine (not fitted)* ...........................3.11, 3.14, 3.31, 7.07, 7.88
6-Hydroxynicotinate† ............................6.62, 8.07
Indole§ ....................................................6.61, 7.18, 7.27, 7.42, 7.56, 7.72
Isoleucine*..............................................0.94, 1.01, 1.25, 1.26, 3.68, 3.74
Lactate‡ ..................................................1.33, 4.12
Leucine*..................................................0.96, 0.97, 1.72, 3.74
Lysine* ....................................................1.46, 1.48, 1.73, 1.89, 1.91, 3.03
Methionine* ...........................................2.12, 2.14, 2.65
Methionine-S-oxide† .............................2.74, 2.76, 2.93
Nicotinic acid* .......................................8.61, 8.94
Pyrimidine nucleotide* .........................5.91
Ornithine‡...............................................3.81
Phenylalanine* .......................................3.11, 3.28, 4.01, 7.33, 7.39, 7.43
Pyroglutamate† ......................................2.06, 2.39, 2.42, 2.51, 7.98
Serine* ....................................................3.79, 3.85, 3.96
Succinate†...............................................2.41
Threonine* .............................................1.33, 3.59, 4.26
Trehalose* ..............................................3.46, 3.65, 3.83, 3.86, 3.88, 5.20
Tryptophan† ...........................................3.31, 7.29, 7.55, 7.74
Tyrosine* ................................................3.073.22, 3.31, 3.94, 6.90, 7.20
Uracil*.....................................................5.82, 7.55
Valine* ....................................................0.99, 1.05, 2.28, 3.62
Unassigned metabolite

(potential quinolone) ........................7.68, 8.10

a Note that the metabolites listed here may have other resonances: the table
includes only the most characteristic and well-resolved resonances. Resonances
in boldface were used for nonlinear fitting of compounds.

b �, Observed in both LB and SCFM; †, observed in LB only; ‡, observed in
SCFM only; §, observed for E. coli only (not tested in SCFM).
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FIG. 2. Metabolite changes in different media and different strains across the course of growth. (A to E) Heatmaps. Each row represents a
metabolite or a peak from an as-yet unassigned metabolite. Blue indicates a decrease in concentration, and red indicates an increase in
concentration. Note that panels B to E can be directly compared visually but that the metabolites in panel A do not line up directly with B to E.
The row for metabolite “6HN/indole” represents 6-hydroxynicotinate for P. aeruginosa strains and indole for E. coli. (A) P. aeruginosa PA01,
SCFM; (B) P. aeruginosa PA01, LB; (C) P. aeruginosa PA14, LB; (D) P. aeruginosa PA0381, LB; (E) E. coli, LB. Selected metabolites with different
modes of utilization and/or production are then shown in detail in the bottom half of the figure (error bars represent � the standard errors of the
mean). (F) Acetate, E. coli, showing a transient increase in metabolite concentration; (G) unassigned metabolite, E. coli, showing a peak at � 1.10
ppm and a steady increase in metabolite concentration; (H) formate, P. aeruginosa PA01, LB, showing a transient decrease in metabolite
concentration followed by subsequent production. (I and J) Overall comparison of the different modes shown as pie charts (indicating the
percentage of assigned metabolites that changed in some way during growth). (I) P. aeruginosa PA01, SCFM; (J) P. aeruginosa PA01, LB.
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ion, e.g., an as-yet-unassigned doublet resonance at � 1.10 ppm
(probable methyl group signal from an organic acid [Fig. 2G]).
As shown in Fig. 2, the growth medium itself has a large
influence on the metabolite utilization and depletion patterns,
with major differences between P. aeruginosa PA01 grown in
LB and in SCFM. The uptake behavior at the compound level
is summarized in Fig. 2 and Table 2. Based on these first
observations, the differences in compound utilization and ex-
cretion were further investigated and are discussed below.

Nonlinear regression modeling can be used to describe me-
tabolite utilization over time. Most of the NMR-detectable
resonances decreased over the course of growth (Fig. 2I and J).
In order to further describe the changes in exometabolome
composition over time, the concentration changes of individual
metabolites were modeled by regression. Linear regression
against time was a poor descriptor of metabolite consumption.
Most of the NMR intensities did not describe a straight line
when plotted against time, and thus each modeled variable
usually contained an unacceptable amount of fitting error (as
an example, the dotted line in Fig. 3B shows the linear fit of the
pyroglutamate resonance at 2.40 ppm in one P. aeruginosa
PA01 culture). Only about one-third of the fitted resonances
had an R2 value of greater than 0.6. For many compounds, the
change in the resonance intensities roughly mirrored a growth
curve and thus more closely resembled a straight line when
plotted against OD (data not shown). The fits were indeed
slightly improved when cell density (OD600) rather than time
was used as the x variable: about half of the fitted resonances
had R2 values greater than 0.6. However, the average correla-
tion across all resonances was still poor for both time and the
OD (R � 0.48 for time, 0.56 for OD). Instead, fits were signif-
icantly improved by using an appropriate nonlinear model. A
bacterial growth curve typically describes a sigmoid shape over

time. Although the intensities of most NMR resonances did not
exactly mirror this growth curve, they did decrease in a sigmoid
fashion. Consequently, fitting sigmoid curves to the evolution of
the resonances over time markedly decreased errors for “real”
peaks as opposed to noise (the solid line in Fig. 3B). Even after
imposing stringent cutoff values for fit (see Materials and Meth-
ods), the data set still contained about two-thirds of the reso-
nances. Nonlinear fitting is well suited to study media depletion
but was less useful for secreted metabolites.

For the data successfully fitted by nonlinear modeling, the
time course of each metabolite resonance was described by
four parameters (Fig. 3A). Three parameters summarize the
uptake characteristics for each metabolite: the relative decrease
of the resonance with time (amplitude), the time of uptake (t50),
and the duration of uptake (width). The fourth parameter, the
offset, i.e., the intensity at the start of the experiment, does not
represent meaningful information in this case, since we used dif-
ference spectra for the analysis. Hence, the offset was zero (for
the original data) or close to zero (fitted data).

Uptake window plots visualize compound utilization. The
parameters of the sigmoid equation can be used to obtain
physiological information for individual compounds. Both the
t50 and the width are in units of time, with the t50 defining the
time point at which the amplitude has reached its half-way
point, i.e., when half of the compound has been utilized. The
width is defined as the time that elapses for the exponent of e
to go from 1 to �1 (see Materials and Methods) and roughly
translates to the duration in which the compound is taken up
at the maximum rate; the width thus defines a time span or
“uptake window” for any fitted compound or resonance lying
around the compound t50 value (Fig. 3). These “uptake win-
dows” can be projected onto the OD600 growth curves of the
individual strains to visualize differential compound uptake.
Figures 4A to D show the projections of the uptake windows of

Amplitude

Offset

Width

Uptake window

t50
0 6 12 18 24

Time (hours)

A B

FIG. 3. (A) Schematic showing the parameters for nonlinear curve
fitting. (B [inset]) Curve fit for a representative compound (pyroglu-
tamate) for P. aeruginosa PA01. Solid line indicates the sigmoid fit; the
dotted line indicates much poorer linear fit.

TABLE 2. Comparison of fitted metabolite t50 values for
P. aeruginosa PA01 grown in LB and SCFM

Amino acid

Metabolite t50 values
(h)a in: Difference (h)b

LB SCFM

Tyrosine 14.8 6.5 –8.3
Valine 15.8 8.5 –7.3
Phenylalanine 8.8 5.0 –3.8
Lysine 11.3 8.0 –3.3
Leucine 9.6 7.0 –2.5
Isoleucine 8.1 7.0 –1.2
Aspartate 3.1 2.2 –0.9
Arginine 4.0 3.5 –0.5
Glycine 5.3 5.0 –0.3
Glutamate 2.9 2.8 –0.2
Alanine 3.5 3.4 –0.1
Serine 2.7 4.3 1.6
Threonine 5.8 7.7 2.0
Asparagine 2.3 NO
Methionine NU 11.8
Ornithine NO 4.0
Tryptophan 4.7 NO

a NU, not utilized; NO, not observed.
b “Difference” refers to the difference between the t50 value in SCFM com-

pared to that in LB medium, i.e., the lower the value, the earlier the metabolite
was taken up in SCFM compared to LB.
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FIG. 4. Uptake window plots for seven example compounds for all four bacterial strains. The compound t50 is back-projected upon the actual
culture growth curve, i.e., all biological replicates are shown. The “error bars” represent the calculated width (see Fig. 2 for an illustration of t50
and width). Note that both the abscissa (time) and ordinate (OD600) have been scaled such that growth curve maxima are set at 100%, to facilitate
comparison across different strains. (A) E. coli; (B) P. aeruginosa PA01; (C) P. aeruginosa PA14; (D) P. aeruginosa PA0381. The remaining two
panels compare uptake windows for P. aeruginosa PA01 for two different media: (E) LB and (F) SCFM. Note that glucose is plotted (not trehalose
as for panel A), since glucose is higher concentration in SCFM.
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seven compounds (alanine, leucine, threonine, asparagine, va-
line, succinate, and the disaccharide trehalose) onto the growth
curves of the E. coli and the three P. aeruginosa strains for LB.
Each circle represents the t50 value of one compound for one
biological replicate, with the bars on either side representing
the width of the same compound.

These uptake window plots illustrate how TReF is able to
elucidate similarities and differences in compound utilization
of strains, as summarized with a single plot. Not only did the
uptake windows differ dramatically for the individual metabo-
lites, but there was very clear separation between them, i.e., the
different amino acids fell into different “utilization groups,”
which were separated along the growth curve. For example, P.
aeruginosa PA01 (grown in LB) did not take up threonine until
after the simultaneous depletion of alanine and asparagine.
Leucine was then taken up after threonine had been removed.
This order was also observed for the two other P. aeruginosa
strains but was different in E. coli, with trehalose taken up
before alanine and leucine not taken up at all.

In addition, the plots provide evidence for significant differ-
ences between the three P. aeruginosa strains. PA14 does not
take up succinate in a sigmoidal fashion; however, the com-
pound was quickly removed from the medium in all strains.
Interestingly, PA0381, originally derived from PA01, was
shown to have lost its ability to utilize trehalose. This loss of
function could be a side effect of the leucine auxotrophy caus-
ing a metabolic network rearrangement. However, a more par-
simonious explanation is that the nonspecific mutagenesis used
to obtain the leucine auxotroph phenotype (53) also affected
one of the genes necessary for trehalose breakdown (the trans-
porter or the trehalase).

Transient changes in the exometabolome and metabolite
excretion. Apart from metabolite uptake, a large proportion of
the detected resonances transiently increased or decreased
during growth in both LB and SCFM (Fig. 2). As a positive
confirmation, we detected acetate production by E. coli, a
known example of overflow metabolism. Acetate is a fermen-
tation product that accumulates at high growth rates, probably
due to a rate bottleneck in aerobic metabolism (38); it was by
far the clearest example of overflow metabolism in the present
study. When grown in LB, all Pseudomonas strains transiently
excreted the amino acids valine and tyrosine. In PA01 cultures,
a singlet resonance at 2.24 ppm (putatively assigned as acetal-
dehyde) showed excretion dynamics similar to those of valine.
Interestingly, this was not observed for the other Pseudomonas
strains. In contrast, formate (Fig. 2H) was taken up from the
medium during the first couple of hours of growth but was
excreted in the stationary phase. In addition to these transient
changes, a number of resonances increased proportionally to
cell number over the course of growth, including 6-hydroxy-
nicotinate (all Pseudomonas strains), indole (E. coli), and ura-
cil (all strains).

Compound utilization and excretion are dramatically influ-
enced by the constituents of the growth media. It could be
argued that the complexity of the responses we observed was
partly due to our using a complex and undefined growth me-
dium. To that end, we compared the exometabolome of P.
aeruginosa PA01 grown in LB to that grown in SCFM, a de-
fined medium designed and shown to mimic conditions and
utilization dynamics in cystic fibrosis sputum (46). Even though

the cell density (i.e., the OD600) in different media did not
differ greatly (data not shown), the choice of growth medium
had a dramatic effect on the dynamics of the exometabolome,
affecting both compound uptake and excretion (Fig. 2 and 4E
and F). Concerning compound utilization, a comparison of the
uptake windows for selected amino acids in the two media
(Table 2 and Fig. 4E and F) revealed several trends. Some
amino acids, such as lysine, phenylalanine, and leucine, were
taken up later from LB than from SCFM, which might hint at
some sort of catabolite repression-like regulation in LB (see
the Discussion). In contrast, the uptake dynamics of alanine,
glutamate, aspartate, and arginine were relatively unaffected
since they were taken up at an early stage in both cultures. In
terms of compound secretion, many more resonances in-
creased when PA01 was grown in SCFM compared to when
PA01 was grown in LB. The transient increases in tyrosine and
valine were also not observed in SCFM, but other resonances
(1.07d, 2.51s, and 2.53s) were observed to increase transiently.
Finally, the pattern of formate change (transient decrease,
followed by an increase) was even more pronounced in SCFM.

Potential application of TReF as a functional genomics tool.
Pattern recognition algorithms like PCA are widely used for
multivariate data to visualize and summarize metabolic differ-
ences by dimension reduction. It was possible to separate E.
coli and all P. aeruginosa strains using PCA on stationary-phase
samples, and the approach very clearly showed the metabolites
responsible for the strain differences (Fig. 5). However, the
plots also show how single time point profiling would miss the
“big picture,” i.e., the metabolite concentration changes that
occur at other time points. If, for example, the cultures were
sampled at 12 h, valine would appear to be excreted only by
PA01 (Fig. 5E). In fact, PA14 and PA0381 also excrete valine
at earlier time points. Had the exometabolome been sampled
at 24 h only, valine would appear to be utilized by all three P.
aeruginosa strains to roughly the same extent. In addition, the
strains’ leucine (Fig. 5F) utilization would look roughly equiv-
alent after 12 h, whereas, in fact, leucine uptake was slower and
had a slightly greater amplitude in PA01 cultures. Of the dis-
criminatory metabolites at 12 h, only trehalose (Fig. 5D)
showed the same qualitative difference between the strains at
all time points. One advantage of the nonlinear metabolite
fitting is that the fit parameters summarize key biological end-
points (e.g., compound uptake rates) in a compact way. Thus,
by using the fit parameters as input for the multivariate anal-
yses, it is possible to compare data in a principled way from
different strains, which might have slightly different growth
rates, lag phases, etc. Naturally, each parameter could be an-
alyzed separately, but it is also possible to combine these in a
single hierarchical model (Fig. 5C).

As a test case for the resolution the TReF/H-PCA approach
could offer, we analyzed culture supernatants of two species
(nine strains in total) of the closely related BCC. Single time
point profiling like that shown for stationary phase (t � 24 h)
samples only provided some possible species separation, but
with considerable overlap between the species groups (Fig. 6A,
similar results for other time points [data not shown]). An
added complication for this data set was that the strains
showed large variations in growth rate, which were picked up
by standard multivariate methods. However, the nonlinear
H-PCA approach showed a separation of B. cepacia and B.
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cenocepacia along PC1 (Fig. 6B). Thus, while “standard” foot-
printing based on single time points may be adequate for
showing large metabolic differences, it failed to fully represent
the subtle metabolic differences between the BCC strains,
which required the nonlinear fit data. (We also tested H-PCA
alone, i.e., a hierarchical model based on PCA for individual
time points without any curve fitting, but this offered no ad-
vantages in comparison to analyzing single time points, and
failed to separate the BCC species; data not shown.)

DISCUSSION

We have developed a TReF approach for bacteria that
should be widely applicable. Considering changes in the cul-
ture medium over the whole course of growth provides infor-
mation that would be lost in a single time point analysis.

Bacteria show “multiauxic” uptake behavior on complex
media. TReF revealed differential compound uptake for all
investigated strains, and for both a rich and a defined medium
(LB and SCFM). The existence of a complex regulatory net-
work leading to highly adaptable uptake dynamics is not sur-
prising. In rich (or defined multicompound) media, expression
and translation of the transporter systems and catabolic path-
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ways need to be controlled. The genomes of the Pseudomonas
species group contain over 300 known or putative nutrient
uptake systems (56). Expressing all inducible transporters and
catabolic pathways at once will not be energetically favorable,
and so a form of multiauxic growth and sequential compound
uptake, like that observed here, is the likely outcome—al-
though the extent of the differentiation between compound
utilization classes during apparently exponential growth was
surprising. A number of previous studies, albeit mostly not
using rich media, have hinted at the complexity of the regula-
tion at hand (see, for example, references 3, 19, and 30).

Catabolite repression is a generic mechanism for regulation
of substrate usage, and, for example, succinate represses argi-
nine catabolism in Pseudomonas aeruginosa (42). ArgR con-
trols the aerobic catabolism of arginine in P. aeruginosa (47)
and also controls the levels of OprD, a porin for basic amino
acids (44) and a serine transporter (32). It is therefore logical
that our data show that succinate depletion precedes the uti-
lization of not only arginine but also a number of other amino
acids (Fig. 4). As a second example, lysine was depleted at an
earlier growth phase in SCFM than in LB. Lysine can be
imported by the specific permease LysP (54) but also by the
putative basic amino acid ABC transporter PA5152-PA5155
(24). Transposon mutants within this operon were severely
impaired in growth on ornithine as a single carbon source (24),
so this transporter clearly contributes to P. aeruginosa’s ability
to use ornithine. Hence, it is highly probable that the high
concentrations of ornithine in SCFM would induce expression
of PA5152-PA5155, thereby potentially simultaneously in-
creasing the potential rate of lysine uptake. These examples
show how an untargeted approach can generate eminently
testable hypotheses.

Influence of medium composition on uptake and excretion.
In addition to utilization, we studied compound excretion. Var-
ious compounds, such as acetate, valine, and tyrosine, were
excreted transiently, whereas others, such as 6-hydroxy nico-
tinic acid or indole, constantly increased over the course of
growth for P. aeruginosa and E. coli, respectively. Formate had
a particularly surprising utilization profile, with depletion fol-
lowed by subsequent excretion; the precise reason is not clear
at this moment. Compound excretion is a well-known phenom-
enon for biotechnologically interesting compounds in bacteria
such as Corynebacterium glutamicum (11, 40). A number of
fundamental principles that lead to compound excretion have
been formulated (11). The obvious explanation for a com-
pound entering the culture medium is excretion of a product
that bacteria “want” to excrete. This is the case for signaling
molecules such as quorum-sensing (QS) signals. Our data show
excretion of indole in E. coli, which was suggested to have
extracellular signaling properties (60). It should be noted that
P. aeruginosa in particular is known for producing a suite of QS
metabolites, which might be expected to be visible in the me-
dium; the reason that we do not identify more QS-related
changes is probably just that NMR has relatively high detection
limits. However, the TReF principle would be identical if a
more sensitive analytical platform was used, such as many
techniques based on mass spectrometry. In addition, com-
pounds might also be excreted because of overflow metabo-
lism, limited catabolism, and deregulated anabolism (11). This
“relief-valve” function has previously been suggested for the

aromatic amino acid exporter (ArAE, formerly AaeAB) in E.
coli (57). This transporter has recently been functionally an-
notated in P. aeruginosa (24), so tyrosine could be excreted by
P. aeruginosa when grown in LB to relieve intracellular stress.
Valine might be excreted due to similar reasons by an as-yet-
unindentified transporter. Interestingly, tyrosine and valine
were only excreted into LB and not in SCFM. Finally, the
increase of 6-hydroxynicotinic acid in P. aeruginosa cultures is
probably due to limited catabolism of NAD or niacin and has
been used as a diagnostic marker of P. aeruginosa infection
(20).

Species discrimination in BCC. An important and general
question is to what degree phenotypic metabolomic data is
informative about the genotype, i.e., strain relatedness, as op-
posed to, say, the ecotype, which could be a convergent result
of adaptation. Previous studies have used both endo- and exo-
metabolome profiling to address this in yeast and bacteria (33,
34, 48); it is clearly a complex question, since metabolomic data
have shown both apparent clustering by ecotype, with addi-
tional genetic within-cluster separation, and also high between-
strain metabolic variability that mostly correlated with geno-
type divisions.

The P. aeruginosa and E. coli profiles were dramatically
different, with the order of uptake of specific metabolites re-
versed (Fig. 4). However, this is perhaps not surprising given
these are very different organisms. We decided to carry out a
more realistic test: whether differences could still be observed
for a set of much more closely related bacteria. We chose two
species of the BCC (B. cepacia and B. cenocepacia, represented
here by four and five independent isolates, respectively) as a
model comparison. The BCC is a collection of genotypically
distinct but phenotypically similar species within the genus
Burkholderia (13, 37). Some BCC members are opportunistic
pathogens that can cause serious infections in patients with
chronic granulomatous disease or cystic fibrosis (35, 37), while
some are found in the rhizosphere of important crops such as
maize and can protect these plants from fungal infection (5).
Species-level identification of BCC members is difficult, and
species are still frequently misidentified, especially using com-
mercial identification systems (31). Single-gene phylogenies
showed that B. cepacia and B. cenocepacia are especially sim-
ilar genetically even within the BCC (36, 55), meaning these
two species formed a stringent test for our approach. The
nonlinear fitting TReF approach was nevertheless able to dis-
criminate the isolates into species groups. It cannot be con-
cluded at this point that this could therefore be used as a
general tool for BCC taxonomy (more isolates would need to
be tested to derive robust conclusions about metabolic differ-
ences in these species) but serves as a proof-of-principle that
our approach of modeling the full-time course of metabolic
changes can provide additional and biologically meaningful
data over single-time-point analyses.

Conclusion. We have shown potential microbiological appli-
cations of time-dependent exometabolome profiling. Modeling
of the amino acid utilization of E. coli and P. aeruginosa dem-
onstrated an unexpected complexity of regulation. In addition,
the same approach was shown to have clear advantages over
single-time-point profiling. TReF allowed comparison of the
physiology of bacteria in different nutritional environments,
and our data clearly demonstrate that marked differences
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could be found. We believe time-dependent metabolic profil-
ing could be a valuable addition to the fields of bacterial
physiology, functional genomics, and as a tool for strain com-
parison, both as a complement to traditional taxonomies and
also for investigating properties such as strain-specific viru-
lence. It is still likely that single-time-point metabolic foot-
printing will be preferred for many studies, simply because it
requires analysis of fewer replicates. We see TReF having a
complementary role, for in-depth phenotype analysis of a
smaller number of strains—which might well, for instance,
have been initially selected through single-time-point profiling.
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